The impact of nanoparticles of titanium (rutile) and silica–titanium fumed oxide (STO) on both the acoustic properties and thermal decomposition of a styrene‐crosslinked unsaturated polyester resin were studied with the methods of ultrasonic probing and thermal decomposition mass spectrometry at filler loadings ranging from 0.5 to 5.0%. It was shown that the elastic modulus, Poisson's ratio, and thermal resistivity in the titanium‐filled nanocomposites increased at small loadings of about 0.5%, whereas in the STO‐filled nanoparticles, the decreases in the parameters at loadings of up to 1.5% was replaced by some increases at higher loadings of up to 5.0%. Distinctions in the concentration dependences of the elastic parameters and the thermal decomposition intensity for both fillers could be explained by the features of the polymer–particle interactions because of the differences in both the number of active sites located on the particle's surface and the polymer structure within interface regions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42010.