Metal-flavonolate compounds are of significant current interest as synthetic models for quercetinase enzymes and as bioactive compounds of importance to human health. Zinc-3-hydroxyflavonolate compounds, including those of quercetin, kampferol, and morin, generally exhibit bidentate coordination to a single Zn center. The bipyridine-ligated zinc-flavonolate compound reported herein, namely bis(μ-4-oxo-2-phenyl-4H-chromen-3-olato)-κO:O,O;κO,O:O-bis[(2,2'-bipyridine-κN,N')zinc(II)] bis(perchlorate), {[Zn(CHO)(CHN)](ClO)}, (1), provides an unusual example of bridging 3-hydroxyflavonolate ligation in a dinuclear metal complex. The symmetry-related Zn centers of (1) exhibit a distorted octahedral geometry, with weak coordination of a perchlorate anion trans to the bridging deprotonated O atom of the flavonolate ligand. Variable-concentration conductivity measurements provide evidence that, when (1) is dissolved in CHCN, the complex dissociates into monomers. H NMR resonances for (1) dissolved in d-DMSO were assigned via HMQC to the H atoms of the flavonolate and bipyridine ligands. In CHCN, (1) undergoes quantitative visible-light-induced CO release with a quantum yield [0.004 (1)] similar to that exhibited by other mononuclear zinc-3-hydroxyflavonolate complexes. Mass spectroscopic identification of the [(bpy)Zn(O-benzoylsalicylate)] ion provides evidence of CO release from the flavonol and of ligand exchange at the Zn center.