Abstract.Rational approximations to the exponential function with real, not necessarily distinct poles are studied in this paper. The orthogonality relation is established in order to show that the zeros of the collocation polynomial of the corresponding Runge-Kutta method are all real, simple and positive. It is proven, that approximants with the smallest error constant are the Restricted Pad6 approximants of Norsett. Some results concerning acceptability properties are given.