In this study, the electrical conductivity of cement mortars formed by additive waste iron chip was investigated. Mixtures with fixed water/cement (0.5) ratios and different ratios of iron chip were prepared. Cement mortars were prepared by adding 0%, 1%, 2%, 4%, 8% and 16% by weight of cement in the mixtures and waste iron chip in the range of 0.5 mm to 4 mm in size. Firstly, the flow test was applied to the cement mortars cured in normal water for 7 and 28 days and their flexure and compressive strengths were determined. Then, the electrical conductivity test was applied to the cement mortar samples. As a result, it was observed that the flow diameter values increased as the average length increased from 0.5 mm to 2 mm in 1% and 2% additive of waste iron chip. It was determined that 1% waste iron chip was higher at 4.54% compressive strength compared to the reference sample. As the amount of added waste iron chip increased, the electrical resistivity value in the samples decreased and the electrical conductivity value increased along with it. At the same time, it was determined that the added iron chip size also increased the electrical conductivity.