Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we consider the generalized Forchheimer flows for slightly compressible fluids in porous media. Using Muskat's and Ward's general form of Forchheimer equations, we describe the flow of a single-phase fluid in R d ,d ≥ 2 by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stability of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters.
This paper is focused on the generalized Forchheimer flows of compressible fluids in porous media. The gravity effect and other general nonlinear forms of the source terms and boundary fluxes are integrated into the model. It covers isentropic gas flows, ideal gases and slightly compressible fluids. We derive a doubly nonlinear parabolic equation for the so-called pseudopressure, and study the corresponding initial boundary value problem. The maximum estimates of the solution are established by using suitable trace theorem and adapting appropriately the Moser's iteration. The gradient estimates are obtained under a theoretical condition which, indeed, is relevant to the fluid flows in applications.
In this article, we will consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for density. The long-time numerical approximation of the nonlinear degenerate parabolic equation with time dependent boundary conditions is studied. The stability for all time is established in a continuous time scheme and a discrete backward Euler scheme. A Gronwall's inequalitytype is used to study the asymptotic behavior of the solution. Error estimates for the solution are derived for both continuous and discrete time procedures. Numerical experiments confirm the theoretical analysis regarding convergence rates. K E Y W O R D SDarcy-Forchheimer flow, error analysis, Galerkin FEM, nonlinear degenerate parabolic equations, numerical analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.