Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This article analyses some literature data and the authors’ developments in the technology of creating of therapeutic depots in the form of films, dispersions of metal oxides and textiles with immobilized biocompatible silver nanoparticles (NPs) in the structure of SiO2, TiO2, cotton, biopolymers (alginate, chitosan, lignin, etc.), that have biocidal action, and future trends in this area. We and other researchers have developed methods for the synthesis of photocatalytically active TiO2 and SiO2 films, modified with gold/silver/copper NPs, suitable for medical use. An economical and simple low-temperature methods of manufacturing antimicrobial textiles by photo- or thermal activation and the possibility of their multiple use have been developed. The production of biomedical textiles is recently focused on the widespread use of non-toxic biopolymers, combined with textile. We have obtained compositions based on nanodispersed silica with polysaccharide sodium alginate and silver NPs with pronounced hemostatic and bactericidal properties. Obtaining a hybrid material based on a bactericidal textile combined with a dispersed oxide is promising for additional absorption of toxins and wound cleaning. The creation of such universal multifunctional materials includes their high bactericidal and antiviral multiply use. Hybrid materials based on metal NPs in the structure of carriers of different nature as films and dispersions of biocompatible oxides, biopolymers, textiles have a protection against possible toxic effects of nanoparticles and metal ions, self-cleaning capability, photocatalytic, hemostatic properties, temperature resistance, and other. The development and application of such materials is growing rapidly. So, materials based on Ag/SiO2 dispersions have high antibacterial and antiviral action (single application). Ag/SiO2 films can act as durable antibacterial cover. There is an enhancement in the antibacterial properties of Ag-TiO2 NPs under visible light irradiation and the photocatalytic effect under UV light (single application in the powder form). Self-cleaning, antimicrobial and UV-protective properties have Ag-TiO2 NPs in textile. Cotton modified with MeNPs demonstrates high efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours have been studied. The number of irreversibly bound particles in textile structure is sufficient for subsequent use. Modified fabrics are reusable. Composites based on metal NPs in the structure of silica or titania in the presence of biopolymers are effective hemostatic agents with a bactericidal effect. Sodium alginate has a reducing and stabilizing effect on nanoparticles, and silica prevents agglomeration of metal NPs in the resulting composite. However, it is quite difficult to satisfy the numerous target requirements for biomedical nanomaterials based on metal NPs in the composition of dispersed oxides as well as textiles and/or biopolymers (“all in one”) to obtain a single universal multifunctional material that does not lose its properties during operation. It makes more sense to produce composites for purpose targeted applications, such as bactericidal and antiviral, hydrophobic coatings for laboratory surfaces, package and so on. Researches in this area are in progress.
This article analyses some literature data and the authors’ developments in the technology of creating of therapeutic depots in the form of films, dispersions of metal oxides and textiles with immobilized biocompatible silver nanoparticles (NPs) in the structure of SiO2, TiO2, cotton, biopolymers (alginate, chitosan, lignin, etc.), that have biocidal action, and future trends in this area. We and other researchers have developed methods for the synthesis of photocatalytically active TiO2 and SiO2 films, modified with gold/silver/copper NPs, suitable for medical use. An economical and simple low-temperature methods of manufacturing antimicrobial textiles by photo- or thermal activation and the possibility of their multiple use have been developed. The production of biomedical textiles is recently focused on the widespread use of non-toxic biopolymers, combined with textile. We have obtained compositions based on nanodispersed silica with polysaccharide sodium alginate and silver NPs with pronounced hemostatic and bactericidal properties. Obtaining a hybrid material based on a bactericidal textile combined with a dispersed oxide is promising for additional absorption of toxins and wound cleaning. The creation of such universal multifunctional materials includes their high bactericidal and antiviral multiply use. Hybrid materials based on metal NPs in the structure of carriers of different nature as films and dispersions of biocompatible oxides, biopolymers, textiles have a protection against possible toxic effects of nanoparticles and metal ions, self-cleaning capability, photocatalytic, hemostatic properties, temperature resistance, and other. The development and application of such materials is growing rapidly. So, materials based on Ag/SiO2 dispersions have high antibacterial and antiviral action (single application). Ag/SiO2 films can act as durable antibacterial cover. There is an enhancement in the antibacterial properties of Ag-TiO2 NPs under visible light irradiation and the photocatalytic effect under UV light (single application in the powder form). Self-cleaning, antimicrobial and UV-protective properties have Ag-TiO2 NPs in textile. Cotton modified with MeNPs demonstrates high efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours have been studied. The number of irreversibly bound particles in textile structure is sufficient for subsequent use. Modified fabrics are reusable. Composites based on metal NPs in the structure of silica or titania in the presence of biopolymers are effective hemostatic agents with a bactericidal effect. Sodium alginate has a reducing and stabilizing effect on nanoparticles, and silica prevents agglomeration of metal NPs in the resulting composite. However, it is quite difficult to satisfy the numerous target requirements for biomedical nanomaterials based on metal NPs in the composition of dispersed oxides as well as textiles and/or biopolymers (“all in one”) to obtain a single universal multifunctional material that does not lose its properties during operation. It makes more sense to produce composites for purpose targeted applications, such as bactericidal and antiviral, hydrophobic coatings for laboratory surfaces, package and so on. Researches in this area are in progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.