Diamondoid molecules are cage-like, ultra stable and saturated hydrocarbons. The basic repetitive unit of the diamondoids is a ten-carbon tetracyclic cage system called "adamantane" (Fig. 1.1). They are called "diamondoid" because they have at least one adamantane unit and their carbon-carbon framework is completely or largely superimposable on the diamond lattice (Balaban and Schleyer, 1978; Mansoori, 2007). The diamond lattices structure was first determined in 1913 by Bragg and Bragg using X-ray diffraction analysis (Bragg and Brag, 1913). Diamondoids show unique properties due to their exceptional atomic arrangements. Adamantane consists of cyclohexane rings in "chair" conformation. The name adamantane is derived from the Greek language word for diamond since its chemical structure is like the three-dimensional diamond subunit as it is shown in Fig. 1.2. 1.2. Classification and Crystalline Structure of Diamondoids The first and simplest member of the diamondoids group, adamantane, is a tricyclic saturated hydrocarbon (tricyclo[3.3.1.1(3.7)]decane, according to the von Bayer systematic nomenclature).