In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.