. (2008). High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Optics Express, 16(5), 3191-3196. DOI: 10.1364/OE.16.003191 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract:We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on bN thin films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magnetron sputtering on MgO substrates at 400 • C. SSPDs were fabricated on high quality NbN films of different thickness (7 to 3nm) deposited under optimal conditions. Electrical and optical characterizations were performed on the SSPDs. The highest QE value measured at 4.2K is 20% at 1300nm. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating" Opt. Express 14(2), 527-534 (2006). 5. K. Iizuka, K. Matsumaru, T. Suzuki, H. Hirose, K. Suzuki, and H. Okamoto, "Arsenic-free GaAs substrate preparation and direct growth of GaAs/AlGaAs multiple quantum well without buffer layer" J. Cryst. Growth 150(1 -4 pt 1), 13-17 (1995 Gol'tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range" Appl.