To guide the illuminating design to improve the on-state performances of gallium arsenide (GaAs) photoconductive semiconductor switch (PCSS), the effect of spot size on the operation mode of GaAs PCSS based on a semi-insulating wafer with a thickness of 1 mm, triggered by a 1064-nm extrinsic laser beam with the rectangular spot, has been investigated experimentally. It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes, and then significantly boosts the PCSS toward different operation modes. On this basis, a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms. Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching, while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching, which have been proved by comparing the domain evolutions under different spot sizes.