In this paper, we study blow‐up solutions to nonlinear parabolic equations
(b(u(x,t)))t=∇·[ρ(u(x,t))∇u(x,t)]+f(x,t,u(x,t)),(x,t)∈Ω×(0,t∗),
under the mixed boundary conditions. In order to obtain blow‐up solutions, we introduce new conditions as follows:
false(Cρ0.1em1false)αFfalse(x,t,ufalse)≤uρfalse(ufalse)ffalse(x,t,ufalse)+()α2−1λ0ρm2u2+γ,0.1em0.1emx∈normalΩ,0.1em0.1emt>0,0.1em0.1emu>0,false(Cρ0.1em2false).0.1emFor each0.1emx∈normalΩ0.1em0.1emand0.1em0.1emu>0,0.1em0.1emFfalse(x,t,ufalse)0.1emis nondecreasing in0.1emt>0,
for some constants α and γ with α > 2, where λ0 is the first eigenvalue for the Laplace operator,
ρm:=infs>0ρfalse(sfalse), and
Ffalse(x,t,ufalse):=true∫0uρfalse(sfalse)ffalse(x,t,sfalse)ds. In fact, the condition (Cρ 1) depends on the domain and the boundary condition because of the first eigenvalue λ0. Also, we provide examples which demonstrate the main results.