Solar limb and disc spicule quasi- periodic motions have been reported for a
long time, strongly suggesting that they are oscillating. In order to clear up
the origin and possibly explain some solar limb and disc spicule quasi-periodic
recurrences produced by overlapping effects, we present a simulation model
assuming quasi- random positions of spicules. We also allow a set number of
spicules with different physical properties (such as: height, lifetime and tilt
angle as shown by an individual spicule) occurring randomly.
Results of simulations made with three different spatial resolutions of the
corresponding frames and also for different number density of spicules, are
analyzed. The wavelet time/frequency method is used to obtain the exact period
of spicule visibility. Results are compared with observations of the
chromosphere from i/ the Transition Region and Coronal Explorer (TRACE)
filtergrams taken at 1600 angstrom, ii/ the Solar Optical Telescope (SOT) of
Hinode taken in the Ca II H-line and iii/ the Sac-Peak Dunn's VTT taken in
H{\alpha} line. Our results suggest the need to be cautious when interpreting
apparent oscillations seen in spicule image sequences when overlapping is
present, i.e.; when the spatial resolution is not enough to resolve individual
components of spicules.Comment: 20 pages, 7 figures, 1 tabl