Sleep is a fundamental physiological process conserved across most species. As such, deficits in sleep can result in a myriad of psychological and physical health issues. However, the mechanisms underlying the induction of sleep are relatively unknown. Interestingly, general anesthetics cause unconsciousness by positively modulating GABA-A receptors (GABAARs). Based on this observation, it is hypothesized that GABAARs play a critical role in modulating circuits involved in sleep to promote unconsciousness. Recently, the lateral habenula (LHb) has been demonstrated to play a role in sleep physiology and sedation. Specifically, propofol has been shown to excite LHb neurons to promote sedation. However, the mechanism by which this occurs is unknown. Here, we utilize whole-cell voltage and current clamp recordings from LHb neurons obtained from 8-10 week old male mice to determine the physiological mechanisms for this phenomenon. We show that bath application of 1.5μM propofol is sufficient to increase LHb neuronal excitability involving synaptic transmission, but not through modulation of intrinsic properties. Additionally, although there is increased LHb neuronal excitability, GABAARs localized postsynaptically on LHb neurons are still responsive to propofol, as indicated by an increase in the decay time. Lastly, we find that propofol increases the synaptic drive onto LHb neurons involving enhanced presynaptic release of both glutamate and GABA. However, the greatest contributor to the potentiated synaptic drive is the increased release of glutamate which shifts the balance of synaptic transmission towards greater excitation. Taken together, this study is the first to identify the physiological basis for why LHb neurons are excited by propofol, rather than inhibited, and as a result promote sedation.