Monocyte chemoattractant protein-1 (MCP-1) is a cytokine that mediates the influx of cells to sites of inflammation. Our group recently reported that propofol exerted an anti-inflammatory effect and could inhibit lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines. However, the effect and possible mechanisms of propofol on MCP-1 expression remain unclear. LPS-stimulated HepG2 cells were treated with 50 μM propofol for 0, 6, 12, and 24 h, respectively. The transcript and protein levels were measured by real-time quantitative PCR and Western blot analyses, respectively. We found that propofol markedly decreased both MCP-1 messenger RNA (mRNA) and protein levels in LPS-stimulated HepG2 cells in a time-dependent manner. Expression of apolipoprotein M (apoM) and forkhead box protein A2 (foxa2) was increased by propofol treatment in HepG2 cells. In addition, the inhibitory effect of propofol on MCP-1 expression was significantly abolished by small interfering RNA against apoM and foxa2 in LPS-stimulated HepG2 cells. Propofol attenuates LPS-induced MCP-1 production through enhancing apoM and foxa2 expression in HepG2 cells.