In the Republic of Korea, a Long Term Evolution (LTE)-based public safety (PS)-LTE network is being built using 718~728 MHz for uplink and 773~783 MHz for downlink. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network, so great concerns and practical researches on co-channel interference (CCI) management schemes are urgently required. In this paper, performance is analyzed and evaluated by considering the cases of non-RAN (radio access network) sharing and LTE-R RAN sharing by PS-LTE user equipments (UE). Since a train control signal requires high reliability and low latency in order to fulfill its mission-critical service (MCS) requirements, we give higher priority to LTE-R UE during resource allocation under the LTE-R RAN sharing by PS-LTE UEs. In addition, interference management schemes are more effective for the coexistence of PS-LTE and LTE-R networks under RAN sharing environment. In this paper, we utilize enhanced inter-cell interference coordination (eICIC) and further enhanced ICIC (FeICIC) schemes to mitigate the interference from PS-LTE network to LTE-R network while improving the LTE-R eNodeB (eNB) resource utilization by offloading more PS-LTE UEs to LTE-R network. Moreover, a coordinated multipoint (CoMP) transmission scheme is considered among LTE-R eNBs to enhance LTE-R cell edge user performance. By employing FeICIC along with coordinated scheduling (CS) CoMP, the best throughput performance can be achieved under the case of RAN sharing.