2014
DOI: 10.1007/s12555-013-0341-0
|View full text |Cite
|
Sign up to set email alerts
|

Proportional-integral controller for stabilization of second-order delay processes

Abstract: This paper considers the problem of determining the complete stabilizing set of proportional-integral (PI) controllers for a second-order process with time delay by employing a version of the Hermite-Biehler theorem applicable to quasipolynomials. With the poles of open-loop system being complex, we first provide the result to find the admissible range of the proportional gain. Then by choosing a fixed proportional gain in this range, we can ascertain the complete region of integral gain which can stabilize th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 33 publications
0
1
0
2
Order By: Relevance
“…(vii) e Nyquist [181] method is also a geometric method and the stability of the systems is determined by the relative position of the point − 1 + 0i and the contour [51,52] mentioned in the previous section can be applied for TDS using the imaginary and real parts of the quasi-polynomial, Q(s � iω) � Re Q(iω) { } + Im Q(iω) { }, i � Q r (ω) + Q i (ω)i; the stability of the system is determined by a continuous alternation between transformations of the real functions Q r (ω) and Q i (ω), when increasing phase condition ω > ω * , for any ω * ∈ (− ∞, ∞). See its extensions in [185,186]. (xi) e Edge theorem [187], zero exclusion principle, and concept of convex direction [188] are graphical methods to determine stability of a set of quasipolynomial family or convex polytope family.…”
Section: Stability In the Frequency Domainmentioning
confidence: 99%
“…(vii) e Nyquist [181] method is also a geometric method and the stability of the systems is determined by the relative position of the point − 1 + 0i and the contour [51,52] mentioned in the previous section can be applied for TDS using the imaginary and real parts of the quasi-polynomial, Q(s � iω) � Re Q(iω) { } + Im Q(iω) { }, i � Q r (ω) + Q i (ω)i; the stability of the system is determined by a continuous alternation between transformations of the real functions Q r (ω) and Q i (ω), when increasing phase condition ω > ω * , for any ω * ∈ (− ∞, ∞). See its extensions in [185,186]. (xi) e Edge theorem [187], zero exclusion principle, and concept of convex direction [188] are graphical methods to determine stability of a set of quasipolynomial family or convex polytope family.…”
Section: Stability In the Frequency Domainmentioning
confidence: 99%
“…Aunque actualmente la mayoría de los estudios relacionados con sistemas con retardos se realizan en el dominio del tiempo, algunos trabajos recientes llevados a cabo en el dominio de la frecuencia estudian el problema de estabilizar plantas de primer y segundo orden con retardo empleando controladores PI o PID, [12], [13], [21], [36], [42], [60]. Para el análisis de estabilidad en el dominio de la frecuencia es necesario estudiar la ubicación de las raíces de su correspondiente ecuación característica, que en el caso de sistemas con retardo resultan ser funciones analíticas con términos polinomiales y exponenciales llamadas cuasipolinomios.…”
Section: Justificaciónunclassified
“…Una de las característica más destacadas de un cuasipolinomio es que tiene un número infinito de raíces. A diferencia del análisis de estabilidad en el dominio del tiempo, en el dominio de la frecuencia es posible obtener condiciones necesarias y suficientes de estabilidad, esto ha hecho posible encontrar o caracterizar el conjunto de todos los parámetros que estabilizan un sistema en lazo cerrado con una ley de control PI o PID, en plantas de primer y segundo orden con retardo [12], [60].…”
Section: Justificaciónunclassified