Abstract-One of the most important goals of TCP is to ensure fairness and prevent congestion collapse by implementing congestion control. Various attacks against TCP congestion control have been reported over the years, most of which have been discovered through manual analysis. In this paper, we propose an automated method that combines the generality of implementation-agnostic fuzzing with the precision of runtime analysis to find attacks against implementations of TCP congestion control. It uses a model-guided approach to generate abstract attack strategies, by leveraging a state machine model of TCP congestion control to find vulnerable state machine paths that an attacker could exploit to increase or decrease the throughput of a connection to his advantage. These abstract strategies are then mapped to concrete attack strategies, which consist of sequences of actions such as injection or modification of acknowledgements and a logical time for injection. We design and implement a virtualized platform, TCPWN, that consists of a a proxy-based attack injector and a TCP congestion control state tracker that uses only network traffic to create and inject these concrete attack strategies. We evaluated 5 TCP implementations from 4 Linux distributions and Windows 8.1. Overall, we found 11 classes of attacks, of which 8 are new.