2020
DOI: 10.15640/jcsit.v8n2a1
|View full text |Cite
|
Sign up to set email alerts
|

Proportional Voting based Semi-Unsupervised Machine Learning Intrusion Detection System

Abstract: Feature selection of NSL-KDD data set is usually done by finding co-relationships among features, irrespective of target prediction. We aim to determine the relationship between features and target goals to facilitate different target detection goals regardless of the correlated feature selection. The unbalanced data structure in NSL-KDD data can be relaxed by Proportional Representation (PR). However, adopting PR would deny the notion of winner-take-all by attracting a majority of the vote and also provide a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 1 publication
0
0
0
Order By: Relevance