The novel coronavirus COVID-19 has known a large spread over the globe threatening human health. Recommendations from WHO and specialists insist on testing on a mass scale. However, health systems do not have enough resources. The current process requires the isolation of testees in the hospitals’ isolation rooms for several hours until the test results are revealed, limiting hospitals’ capacities to test large numbers of cases. The aim of this paper was to estimate the impact of reducing the COVID-19 test time on controlling the pandemic spread, through increasing hospitals’ capacities to test on a mass scale. First, a discrete-event simulation was used to model and simulate the COVID-19 testing process in Morocco. Second, a mathematical model was developed to demonstrate the effect of accurate identification of infected cases on controlling the disease’s spread. Simulation results showed that hospitals’ testing capacities could be increased six times if the test duration fell from 10 hours to 10 minutes. The reduction of test time would increase testing capacities, which help to identify all the infected cases. In contrast, the simulation results indicated that if the infected population is not accurately identified and no precautionary measures are taken, the virus will continue to spread until it reaches the total population. Reducing test time is a vital component of the response to the COVID-19 pandemic. It is essential for the effective implementation of policies to contain the virus.