Rotaxanes are designated as molecular machines due their different movements. Systematic studies regarding the different conformations adopted by these systems and the factors that lead to the distribution of the conformations, in both solution and the solid state, have not been widely explored, especially for rotaxanes with nonsymmetric stoppers. Therefore, in this study we have investigated three novel [2]rotaxanes containing threads derived from nonsymmetric succinamides [R1R2NC(O)‐CH2CH2‐C(O)NR2R1, with R1/R2 = Bu/Bn, Bu/2‐furylmethyl, and 5‐methylisoxazol‐3‐yl/2‐furylmethyl]. The proportions of rotamers were investigated for threads and rotaxanes by solution and solid‐state NMR spectroscopy as well as by single‐crystal and powder X‐ray diffraction. In solution, the threads present different proportions of conformer, with the E,Z conformation prevailing, whereas only one conformer is observed in the solid state. For the rotaxanes, only one conformer prevails in the single crystal, whereas the solution and solid (bulk) states present more than one rotamer. These proportions are modified when the threads are incorporated into the macrocycle during rotaxane formation. The intramolecular interactions in each rotamer were investigated by QTAIM and variable‐temperature 1H NMR experiments. The changes in conformational population between the threads and respective rotaxanes can be explained by a set of different intramolecular interactions, with trifurcated hydrogen bonds responsible for most of the stabilization energy.