The identification of residual stresses (RS) in components made by selective laser melting (SLM) is necessary for subsequent technological optimization. The presented research is devoted to evaluating the influence of the combination of laser power (P), scanning velocity (v) and the rarely considered number of layers (nL) on surface residual stresses in SLM stainless steel SS 316L. Experimental parameters were set based on the Design of Experiment (DoE) method, with follow-up X-ray diffraction (XRD) measurements and data processing using analysis of variance (ANOVA) and regression analysis. The obtained data are a valuable stepping-stone for the subsequent design of research focused on the application of sustainable eco-friendly Abrasive Water Jet (AWJ) peening for RS modification in the evaluated material.