Background
Glucagon-like peptide-1 receptor agonists have been reported to reduce body fat as well as improving glycemic control in obese patients with type 2 diabetes. However, the maximum dose of liraglutide is limited to 0.9 mg in Japan, while the international dose is 1.8 mg; and the effect of this low dose on body composition has not been assessed in detail. Accordingly, this study was performed to evaluate the effect of liraglutide on body composition when administered at 0.9 mg once daily for 24 weeks.
Methods
Nine patients were enrolled and started liraglutide at 0.3 mg once daily, which was titrated to 0.9 mg once daily after 1 - 2 weeks and continued for 24 weeks. To comprehensively investigate changes of body composition, the body fat and muscle weight were determined by dual energy absorptiometry, visceral fat volume (VFV) and abdominal subcutaneous fat volume (SFV) were measured by abdominal computed tomography (CT), and the intrahepatic lipid content (IHL) was assessed by proton magnetic resonance spectroscopy. Measurements were obtained before starting liraglutide therapy and after 12 and 24 weeks of treatment.
Results
Fasting plasma glucose was significantly reduced from 127 ± 22 to 101 ± 14 mg/dL at 24 weeks and hemoglobin A1c (HbA1c) showed significant reduction from 6.4±0.9% to 5.2±0.5%. Body weight was reduced from 103.4 ± 14.7 to 97.0 ± 12.4 kg (mean reduction: 11.7%) and BMI decreased from 37.4 ± 6.4 to 35.0 ± 5.3 kg/m
2
(mean reduction: 5.8%). Furthermore, VFV and IHL decreased from 5,192 ± 1,730 to 4,513 ± 1,299 cm
3
(mean reduction: 11.9%) and 32.1±12.6% to 15.2±9.2% (mean reduction: 49.2%), respectively, but SFV did not change. Moreover, the fat index was reduced from 14.8 ± 4.4 to 12.9 ± 3.4 kg/m
2
(mean reduction: 10.9%), but the skeletal muscle index did not change.
Conclusions
In obese Japanese drug-naive patients who had type 2 diabetes, treatment with liraglutide (0.9 mg once daily for 24 weeks) reduced body fat, especially visceral fat and intrahepatic fat, while having no significant effect on skeletal muscle.