Background
Propranolol is a first-line clinical drug for infantile haemangiomas (IH) therapy. Nevertheless, resistance to propranolol is observed in some patients with IH. Circular RNAs (circRNAs) has been increasingly reported to act as a pivotal regulator in tumor progression. However, the underlying mechanism of circRNAs in IH remains unclear.
Methods
Quantitative real-time polymerase chain reaction was performed to detect Circ_0000915, miR-890 and RNF187 expression. Protein levels were determined using western blot. CCK-8 assay was used to measure cell proliferation. Caspase-3 activity assay and flow cytometry were conducted to determine cell apoptosis. Luciferase reporter assay was carried out to assess the interaction between miR-890 and Circ_0000915 or RNF187. Chromatin immunoprecipitation assay was performed to detect the interaction between STAT3 and Circ_0000915 promoter. Biotin pull-down assay was used to detect the direct interaction between miR-890 and Circ_0000915. In vivo experiments were performed to measure tumor formation.
Results
Here, we discovered depletion of Circ_0000915 increased propranolol sensitivity of haemangioma derived stem cells (HemSCs) both in vitro and in vivo, whereas forced expression of Circ_0000915 exhibited opposite effects. Mechanistically, Circ_0000915, transcriptionally induced by IL-6/STAT3 pathway, competed with RNF187 for the biding site in miR-890, led to upregulation of RNF187 by acting as a miR-890 “sponge”. Furthermore, silence of miR-890 reversed increased propranolol sensitivity of HemSCs due to Circ_0000915 ablation. Moreover, increased Circ_0000915 and RNF187 levels were observed in IH tissues and positively associated with propranolol resistance, miR-890 exhibited an inverse expression pattern.
Conclusion
We thereby uncover the activation of IL-6/STAT3/Circ_0000915/miR-890/RNF187 axis in propranolol resistance of IH, and provide therapeutic implications for patients of IH with propranolol resistance.