Flow separation results in many problems to single expansion ramp nozzle (SERN) and hypersonic vehicle. However, little research has been conducted on the separation patterns and their effects on SERN’s performance. In the present paper, the numerical simulation is adopted to get the intuitive results and help to analyse the separation phenomena in SERN thoroughly. The main separation pattern is the restricted shock separation (RSS) in SERN, and the free shock separation (FSS) only appears in a small range of the nozzle pressure ratio (NPR), which is much different from the axisymmetric rocket nozzle. Further CFD results show that the separation pattern transition makes great effects on the performance of SERN, especially the lift. Moreover, the performance of SERN has an extreme in the separation pattern transition because of the main jet impinging on the expansion ramp. The transitions occur in both the startup and shutdown processes but the critical nozzle pressure ratios of the separation pattern transitions are different, which leads to a hysteresis loop of SERN performance.