Natural flight was always a source of inspiration to the human being, and with this, humans learned from observing it, even trying to reproduce multiple times what they saw. So new challenges emerged, and as new improvements with the evolution of technology, biomimetic gained new applicability, and great interest among the aeronautical scientific research community.The main objective of the present dissertation is to evaluate experimentally the influence of the shape, and structure in the wing, on their behavior and performance. To accomplish that goal, eight wings were designed (with two different methods), and afterward built, and tested at different airflow speeds (from 0 m/s up to 4 m/s) to compare their results as a function of their frequency, amplitude, average power, and their associated dimensionless parameters. After analyzing the results, it was seen that the amplitude ranges were between 0,12 m and 0,27 m, frequency between 4 Hz and 15 Hz, average power between 0,7 W and 1,8 W, Strouhal and Reynolds numbers have lower and upper limits of 0,15 to 2,2 and from 4,2×10 3 up to 2,8×10 4 , respectively. Also, it is important to mention that the designed wings produced less power per flapping cycle with the increase of the airflow velocity.