Sedentary endoparasitic nematodes cause extensive damage to a large number of ornamental plants and food crops, with estimated economical losses over 100 billion US$ worldwide. Various efforts have put forth in order to minimize nematode damage, which typically involve the use of nematicides that have high cost and enhanced toxicity to humans and the environment. Additionally, different strategies have been applied in order to develop genetically modified plants with improved nematode resistance. Among the strategies are anti-invasion and migration, feeding-cell attenuation, and anti-nematode feeding. In the present study, we focus on anti-nematode feeding, which involves the evaluation and potential use of the cysteine proteinase (CPs) propeptide as a control alternative. The cysteine proteinase prodomain, isolated from Heterodera glycines (HGCP prodomain), is a natural inhibitory peptide used to transform soybean cotyledons using Agrobacterium rhizogenes. Genetically modified soybean roots expressing the propeptide were detected by Western blot and expression levels were measured by ELISA (around 0.3%). The transgenic roots expressing the propeptide were inoculated with a thousand H. glycines at the second juvenile stage, and a remarkable reduction in the number of females and eggs was observed. A reduction of female length and diameter was also observed after 35 days post-inoculation. Furthermore, the H. glycines mature protein was detected in females fed on soybean transformed root expressing or not expressing the propeptide. The data presented here indicate that the HGCP propeptide can reduce soybean cyst nematode infection and this strategy could be applied in the near future to generate resistant crop cultivars.