Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The dual issues of band-limited vertical resolution and nonuniqueness of deterministic inversion results has led to the development of methodologies known as geostatistical, or stochastic, inversion. In these approaches, seismic data are typically inverted directly into a high-resolution geological model. Compared to deterministic inversion, stochastic methods deliver multiple realizations that are consistent with the available well and seismic data. The seismic inversion process is inherently nonunique, meaning that there is an unbounded number of elastic property models that fit the seismic data equally well above some threshold misfit. We explore the notion of the equally large number of possible stress states that could be interpreted from same seismic observations. We make use of stochastic inversion results to incorporate the impact of subseismic uncertainty in seismic-driven geomechanical models. By taking multiple realizations from a prestack stochastic inversion-acoustic impedance, V p /V s , and density-we generate and feed a series of distributions of elastic constants into a finite element stress simulator. The multiple stress solutions allow us to account for uncertainties in the inversion results that can be ultimately captured in a suite of numerical models to predict a set of possible geomechanical states of a field. Therefore, beyond a unique geomechanical forecast for a field, we can now solve for the range of variability in geomechanically safe operational parameters within the field's development plan.
The dual issues of band-limited vertical resolution and nonuniqueness of deterministic inversion results has led to the development of methodologies known as geostatistical, or stochastic, inversion. In these approaches, seismic data are typically inverted directly into a high-resolution geological model. Compared to deterministic inversion, stochastic methods deliver multiple realizations that are consistent with the available well and seismic data. The seismic inversion process is inherently nonunique, meaning that there is an unbounded number of elastic property models that fit the seismic data equally well above some threshold misfit. We explore the notion of the equally large number of possible stress states that could be interpreted from same seismic observations. We make use of stochastic inversion results to incorporate the impact of subseismic uncertainty in seismic-driven geomechanical models. By taking multiple realizations from a prestack stochastic inversion-acoustic impedance, V p /V s , and density-we generate and feed a series of distributions of elastic constants into a finite element stress simulator. The multiple stress solutions allow us to account for uncertainties in the inversion results that can be ultimately captured in a suite of numerical models to predict a set of possible geomechanical states of a field. Therefore, beyond a unique geomechanical forecast for a field, we can now solve for the range of variability in geomechanically safe operational parameters within the field's development plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.