Background
The key role of thrombospondin 1 (THBS1) in the pathogenesis of acute-on-chronic liver failure (ACLF) is unclear. Here, we present a transcriptome approach to evaluate THBS1 as a potential biomarker in ACLF disease pathogenesis.
Methods
Biobanked peripheral blood mononuclear cells (PBMCs) from 330 subjects with hepatitis B virus (HBV)-related etiologies, including HBV-ACLF, liver cirrhosis (LC), and chronic hepatitis B (CHB), and normal controls (NC) randomly selected from the Chinese Group on the Study of Severe Hepatitis B (COSSH) prospective multicenter cohort underwent transcriptome analyses (ACLF = 20; LC = 10; CHB = 10; NC = 15); the findings were externally validated in participants from COSSH cohort, an ACLF rat model and hepatocyte-specific THBS1 knockout mice.
Results
THBS1 was the top significantly differentially expressed gene in the PBMC transcriptome, with the most significant upregulation in ACLF, and quantitative polymerase chain reaction (ACLF = 110; LC = 60; CHB = 60; NC = 45) was used to verify that THBS1 expression corresponded to ACLF disease severity outcome, including inflammation and hepatocellular apoptosis. THBS1 showed good predictive ability for ACLF short-term mortality, with an area under the receiver operating characteristic curve (AUROC) of 0.8438 and 0.7778 at 28 and 90 days, respectively. Enzyme-linked immunosorbent assay validation of the plasma THBS1 using an expanded COSSH cohort subjects (ACLF = 198; LC = 50; CHB = 50; NC = 50) showed significant correlation between THBS1 with ALT and γ-GT (P = 0.01), and offered a similarly good prognostication predictive ability (AUROC = 0.7445 and 0.7175) at 28 and 90 days, respectively. ACLF patients with high-risk short-term mortality were identified based on plasma THBS1 optimal cut-off value (< 28 µg/ml). External validation in ACLF rat serum and livers confirmed the functional association between THBS1, the immune response and hepatocellular apoptosis. Hepatocyte-specific THBS1 knockout improved mouse survival, significantly repressed major inflammatory cytokines, enhanced the expression of several anti-inflammatory mediators and impeded hepatocellular apoptosis.
Conclusions
THBS1 might be an ACLF disease development-related biomarker, promoting inflammatory responses and hepatocellular apoptosis, that could provide clinicians with a new molecular target for improving diagnostic and therapeutic strategies.
Graphical Abstract