The isolation of filamentous fungal strains from remote habitats with extreme climatic conditions has led to the discovery of a series of enzymes with attractive properties that can be useful in various industrial applications. Among these, cold-adapted enzymes from fungi with psychrotrophic lifestyles are valuable agents in industrial processes aiming towards energy reduction. Out of eight strains isolated from soil of the paramo highlands of Ecuador, three were selected for further experimentation and identified as Cladosporium michoacanense, Cladosporium sp. (cladosporioides complex), and Didymella sp., this last being reported for the first time in this area. The secretion of seven enzymes, namely, endoglucanase, exoglucanase, β-D-glucosidase, endo-1,4-β-xylanase, β-D-xylosidase, acid, and alkaline phosphatases, were analyzed under agitation and static conditions optimized for the growth period and incubation temperature. Cladosporium strains under agitation as well as incubation for 72 h mostly showed the substantial activation for endoglucanase reaching up to 4563 mU/mL and xylanase up to 3036 mU/mL. Meanwhile, other enzymatic levels varied enormously depending on growth and temperature. Didymella sp. showed the most robust activation at 8 °C for endoglucanase, β-D-glucosidase, and xylanase, indicating an interesting profile for applications such as bioremediation and wastewater treatment processes under cold climatic conditions.