2018
DOI: 10.1177/1060028018784905
|View full text |Cite
|
Sign up to set email alerts
|

Prospective Validation of a Risk Prediction Model to Identify High-Risk Patients for Medication Errors at Hospital Admission

Abstract: Of 368 included patients, 167 (45.4%) had at least 1 MEA. ROC analysis revealed significant differences in the area under the curve of 0.535 ( P = 0.26; validation cohort) versus 0.752 ( P < 0.0001; derivation cohort). The sensitivity in this validating cohort was 66%, with a specificity of 40%. Conclusion and Relevance: The risk prediction model developed in a general hospital population is not suitable to identify patients at risk for MEA in a university hospital population. However, number of medications is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 8 publications
0
3
0
1
Order By: Relevance
“…Ce facteur de risque d'erreurs médicamenteuses est également retrouvé dans la littérature [12][13][14]. Le lien entre ces classes médicamenteuses et le Les éléments de ciblage habituellement rencontrés dans la littérature sont : l'âge supérieur à 75 ans, l'arrivée des urgences, la polypathologie essentiellement cardiovasculaire et neurologique, la polymédication supérieure à cinq médicaments et la présence de médicaments à MTE [10,[12][13][14][15][16][17][18][19][20][21]. En raison de la moyenne d'âge de 86 ans et d'une forte consommation de médicaments (huit médicaments par patient en moyenne), ces critères n'étaient pas significatifs dans notre étude.…”
Section: Discussionunclassified
“…Ce facteur de risque d'erreurs médicamenteuses est également retrouvé dans la littérature [12][13][14]. Le lien entre ces classes médicamenteuses et le Les éléments de ciblage habituellement rencontrés dans la littérature sont : l'âge supérieur à 75 ans, l'arrivée des urgences, la polypathologie essentiellement cardiovasculaire et neurologique, la polymédication supérieure à cinq médicaments et la présence de médicaments à MTE [10,[12][13][14][15][16][17][18][19][20][21]. En raison de la moyenne d'âge de 86 ans et d'une forte consommation de médicaments (huit médicaments par patient en moyenne), ces critères n'étaient pas significatifs dans notre étude.…”
Section: Discussionunclassified
“…Data of this study were collected to study risk factors of medication errors in all patients, and are currently used to analyse the differences in medication errors between pharmacy technicians and anaesthesiologists. 4 Medication reconciliation was performed at pre-operative screening (POS) by pharmacy technicians when patients used >1 medication, whereas anaesthesiologists performed medication reconciliation in all other patients. Medication reconciliation was performed using a community pharmacy medication overview and consisted of a face-to-face interview with the patient discussing all medication.…”
Section: Editormentioning
confidence: 99%
“… 8 Several risk scores have been developed to identify patients at risk of MEs, either among hospitalised adults, 9 at admission or during discharge. 10 11 Others risk scores specifically identify patients at risk of prescribing errors. 12 13 The Automated Medication Error Risk Assessment System (Auto-MERAS) 14 was the only developed and validated tool for the prediction of MAEs.…”
Section: Introductionmentioning
confidence: 99%
“…A key aspect of a successful intervention is targeting and prioritising patients at high risk of MEs to improve medication safety 8. Several risk scores have been developed to identify patients at risk of MEs, either among hospitalised adults,9 at admission or during discharge 10 11. Others risk scores specifically identify patients at risk of prescribing errors 12 13.…”
Section: Introductionmentioning
confidence: 99%