Quantitative fluorescence polymerase chain reaction (QF-PCR) may be used as a mid-pregnancy test to confirm the diagnosis of common fetal aneuploidies, but its use is controversial. The present study aimed to determine the value of QF-PCR for diagnostic confirmation of karyotyping and the impact of parental origin and meiosis stage on the detected aneuploidy. The present prospective cohort study included pregnant women (age, 21-45 years; gestational age, 17-25 weeks) who consulted between May 2015 and December 2016. Women were screened and only consecutive high-risk individuals were included (n=428). QF-PCR analysis of amniocytes was performed. Karyotype analysis was considered the gold standard. Parental karyotyping was performed if the embryo exhibited any aneuploidy. GeneMapper 3.2 was used for data analysis. There were no false-negative or false-positive QF-PCR results, with 100% concordance with the karyotype. The aneuploidy distribution (n=105) was 68.6% for trisomy 21, 19.0% for trisomy 18, 7.6% for sex chromosome aneuploidy, 3.8% for trisomy 13 and 1.0% for 48,XXX,+18. Regarding trisomy 21, most cases (86.1%) were of maternal origin, 8.3% paternal and 6.5% undefined. Trisomy 18 was 88.2% maternal and 11.8% paternal. Maternal meiosis stage errors in trisomy 21 mainly occurred in meiosis I, while the origin of trisomy 18 exhibited similar proportions between meiosis I and II. The combination of non-invasive pre-natal testing and QF-PCR may become a rapid and effective method for fetal aneuploidy detection. QF-PCR may provide more genetic information for clinical diagnosis and treatment than karyotyping alone.