The flavivirus nonstructural protein NS1 is a highly conserved secreted glycoprotein that does not package with the virion. Immunization with NS1 elicits a protective immune response against yellow fever, dengue, and tick-borne encephalitis flaviviruses through poorly defined mechanisms. In this study, we purified a recombinant, secreted form of West Nile virus (WNV) NS1 glycoprotein from baculovirus-infected insect cells and generated 22 new NS1-specific monoclonal antibodies (MAbs). By performing competitive binding assays and expressing truncated NS1 proteins on the surface of yeast (Saccharomyces cerevisiae) and in bacteria, we mapped 21 of the newly generated MAbs to three NS1 fragments. Prophylaxis of C57BL/6 mice with any of four MAbs (10NS1, 14NS1, 16NS1, and 17NS1) strongly protected against lethal WNV infection (75 to 95% survival, respectively) compared to saline-treated controls (17% survival). In contrast, other anti-NS1 MAbs of the same isotype provided no significant protection. Notably, 14NS1 and 16NS1 also demonstrated marked efficacy as postexposure therapy, even when administered as a single dose 4 days after infection. Virologic analysis showed that 17NS1 protects at an early stage in infection through a C1q-independent and Fc ␥ receptor-dependent pathway. Interestingly, 14NS1, which maps to a distinct region on NS1, protected through a C1q-and Fc ␥ receptor-independent mechanism. Overall, our data suggest that distinct regions of NS1 can elicit protective humoral immunity against WNV through different mechanisms.West Nile virus (WNV) is a single-stranded, positive-senseenveloped RNA virus that is maintained in nature through a mosquito-bird-mosquito transmission cycle. It is endemic in parts of Africa, Europe, the Middle East, and Asia, and outbreaks now occur annually in North America. Humans, which are dead-end hosts, can develop a febrile illness that progresses to a meningitis or encephalitis syndrome (32). At present, treatment is supportive, and no vaccine exists for human use.A member of the Flaviviridae family, WNV is closely related to other major human pathogens such as yellow fever (YF), dengue (DEN), tick-borne encephalitis (TBE), Japanese encephalitis (JEV), and Murray Valley encephalitis (MVE) viruses. The 10.7-kilobase genome is translated as a single polyprotein, which is then cleaved into three structural proteins (C, prM/M, and E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) by both virus-and host-encoded proteases (5). The NS proteins include an RNA-dependent RNA polymerase (NS5), a helicase/protease (NS3), and other proteins that form part of the viral replication complex (36, 37).NS1 is a highly conserved 48-kDa glycoprotein with 12 invariant cysteine residues. Although the disulfide linkage arrangement of MVE and DEN NS1 has been described (4, 66), structural analysis is currently lacking. NS1 is inserted into the lumen of the endoplasmic reticulum via a signal peptide that is cleaved cotranslationally by a cellular signalase to gene...