The growth of the economy and technological advancement has led to an increased demand for energy and the transportation of raw materials for the production of fuels, chemicals, and petroleum products. However, this increased activity has also resulted in an elevated risk of oil‐related disasters, which can have devastating consequences for the environment and local communities. More than 1700 oil spills have occurred, including severe spills such as the Deepwater Horizon spill in 2010, which released 134 million gallons. However, technological developments and restrictions have resulted in a significant reduction in spills. Oil spills happened in aquatic and terrestrial environments providing numerous impacts on wildlife and public health. Existing literature may have limited scope or depth; therefore, this review addresses the literature gap by discussing the strengths and limitations of current and emerging technologies for detecting, cleaning, and restoring oil‐contaminated marine and soil sites. Booms, skimmers, chemical agents (dispersants), and in situ burning are generally used for oil spill remediation. Other than conventional methods, numerous novel approaches including adsorbents (e.g., aerogels, carbon nanotubes, and other sorbents) and modified materials have been developed. For detection purposes, collaboration remote sensing and artificial intelligence are used as new emerging technologies. Modified oil adsorbents such as aerogels, sponges, and carbon nanotubes demonstrated high sorption capacity (> 100 g/g) for oil removal. Despite the challenges such as transport, high production cost, and toxicity, these emerging technologies have the potential to improve the effectiveness of oil spill remediation in the future. The materials with hybrid properties should be developed and more real‐scale tests should be tested to mitigate limitations in practical scenarios of developing novel sorbent modifications like nanoparticles and aerogels.