Diffuse large B‐cell lymphoma (DLBCL) and follicular lymphoma (FL) are two of the most prevalent non‐Hodgkin's lymphoma subtypes. Despite advances, treatment resistance and patient relapse remain challenging issues. Our study aimed to scrutinize gene expression distinctions between DLBCL and FL, employing a cohort of 53 DLBCL and 104 FL samples that underwent rigorous screening for genetic anomalies. The NanoString nCounter assay evaluated 730 cancer‐associated genes, focusing on densely tumorous areas in diagnostic samples. Employing the Lymph2Cx method, we determined the cell‐of‐origin (COO) for DLBCL cases. Our meticulous analysis, facilitated by Qlucore Omics Explorer software, unveiled a substantial 37% of genes with significantly differential expression patterns between DLBCL and FL, pointing to nuanced mechanistic disparities. Investigating the impact of FL disease stage and DLBCL COO on gene expression yielded minimal differences, prompting us to direct our attention to consistently divergent genes in DLBCL. Intriguingly, our Gene Set Enrichment Analysis spotlighted 21% of these divergent genes, converging on the DNA damage response (DDR) pathway, vital for cell survival and cancer evolution. Strong positive correlations among most DDR genes were noted, with key genes like BRCA1, FANCA, FEN1, PLOD1, PCNA, and RAD51 distinctly upregulated in DLBCL compared to FL and normal tissue controls. These findings were subsequently validated using RNA seq data on normal controls and DLBCL samples from public databases like The Cancer Genome Atlas (TCGA) and the Genotype‐Tissue Expression (GTEx) databases, enhancing the robustness of our results. Considering the established significance of these DDR genes in solid cancer therapies, our study underscores their potential applicability in DLBCL treatment strategies. In conclusion, our investigation highlights marked gene expression differences between DLBCL and FL, with particular emphasis on the essential DDR pathway. The identification of these DDR genes as potential therapeutic targets encourages further exploration of synthetic lethality‐based approaches for managing DLBCL.