Anfinsen showed that a protein's fold is specified by its sequence. Although it is clear why mutant proteins form amyloid, it is harder to rationalize why a wild-type protein adopts a native conformation in most individuals, but it misfolds in a minority of others, in what should be a common extracellular environment. This discrepancy suggests that another event likely triggers misfolding in sporadic amyloid disease. One possibility is that an abnormal metabolite, generated only in some individuals, covalently modifies the protein or peptide and causes it to misfold, but evidence for this is sparse. Candidate metabolites are suggested by the recently appreciated links between Alzheimer's disease (AD) and atherosclerosis, known chronic inflammatory metabolites, and the newly discovered generation of ozone during inflammation. Here we report detection of cholesterol ozonolysis products in human brains. These products and a related, lipid-derived aldehyde covalently modify A, dramatically accelerating its amyloidogenesis in vitro, providing a possible chemical link between hypercholesterolemia, inflammation, atherosclerosis, and sporadic AD.
Anfinsen's classic experiments demonstrated that a protein's amino acid sequence specifies its conformation (1). These ideas were extended to explain the misfolding susceptibility of mutant proteins associated with a growing number of familial amyloid diseases (2-5). Although it is thus clear why mutant proteins might be more susceptible to misfolding, it is harder to understand why a wild-type protein or peptide adopts a native conformation in some individuals but it misfolds in others in what should be a common extracellular environment, leading to sporadic amyloid diseases. This discrepancy suggests that other events likely trigger misfolding in sporadic amyloid disease, but their nature remains elusive.The misfolding of secreted amyloid  peptides (A) 39-43 residues in length is linked by a plethora of evidence to the pathology of Alzheimer's disease (AD) (6, 7). A misfolding occurs when the soluble, monomeric, extracellular ensemble of extended conformations and low M r oligomers is transformed first into spherical assemblies, then into a number of intermediates, and lastly into fibrillar cross -sheet quaternary structures known as amyloid (8)(9)(10)(11)(12). Amyloid fibrils and related structures recruit soluble A to the aggregate by a seeded polymerization mechanism (10). The direct neurotoxicity of A aggregates (8, 13) combined with their role in mediating chronic inflammation by microglia (14) and complement cascade activation (15) suggests that aggregation then mediates inflammation (16), which in turn promotes aggregation, in a vicious cycle of AD pathology.It is known that atherosclerosis and AD share many risk factors, including hypercholesterolemia and inflammation. The apoE-4 allele, which exacerbates hypercholesterolemia, has been linked to AD by data from both epidemiological and transgenic mouse studies (17)(18)(19)(20). It has also recently been shown t...