General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
a b s t r a c tThe Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1), (R)-5-(4-hydroxybenzyl)hydantoin (2), and (Z)-5-((6-bromo-1H-indol-3-yl)methylene)-hydantoin (3). The natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (4) showed potent in vitro anti-growth and anti-invasive properties against PC-3M prostate cancer cells in MTT and spheroid disaggregation assays. PMHs 1 and 4 also showed significant anti-invasive activities in orthotopic xenograft and transgenic mice models. To study the effect of electronic and lipophilic parameters on the activity, a wide array of several substituted aldehydes possessing electron-withdrawing (+r), lipophilic (+p), electron-donating (Àr), and less lipophilic substituents (Àp) were used to synthesize several PMHs. Few des-phenylmethylenehydantoins and 2-thiohydanoins were also synthesized and the anti-invasive activities of all compounds were evaluated. Comparative molecular field analysis (CoMFA) was then used to study the 3D QSAR. Predictive 3D QSAR model with conventional r 2 and cross validated coefficient (q 2 ) values up to 0.910 and 0.651 were established. In conclusion, PMH is a novel antimetastatic lead class with potential to control metastatic prostate cancer.