Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.