Increasingly large and frequent wildfires affect air quality even indoors by emitting and dispersing fine/ultrafine particulate matter known to pose health risks to residents. With this health threat, we are working to help the building science community develop simplified tools that may be used to estimate impacts to large numbers of homes based on high-level housing characteristics. In addition to reviewing literature sources, we performed an experiment to evaluate interventions to mitigate degraded indoor air quality. We instrumented one residence for one week during an extreme wildfire event in the Pacific Northwest. Outdoor ambient concentrations of PM2.5 reached historic levels, sustained at over 200 μg/m3 for multiple days. Outdoor and indoor PM2.5 were monitored, and data regarding building characteristics, infiltration, and mechanical system operation were gathered to be consistent with the type of information commonly known for residential energy models. Two conditions were studied: a high-capture minimum efficiency rated value (MERV 13) filter integrated into a central forced air (CFA) system, and a CFA with MERV 13 filtration operating with a portable air cleaner (PAC). With intermittent CFA operation and no PAC, indoor corrected concentrations of PM2.5 reached 280 μg/m3, and indoor/outdoor (I/O) ratios reached a mean of 0.55. The measured I/O ratio was reduced to a mean of 0.22 when both intermittent CFA and the PAC were in operation. Data gathered from the test home were used in a modeling exercise to assess expected I/O ratios from both interventions. The mean modeled I/O ratio for the CFA with an MERV 13 filter was 0.48, and 0.28 when the PAC was added. The model overpredicted the MERV 13 performance and underpredicted the CFA with an MERV 13 filter plus a PAC, though both conditions were predicted within 0.15 standard deviation. The results illustrate the ways that models can be used to estimate indoor PM2.5 concentrations in residences during extreme wildfire smoke events.