Preventive conservation is conductive to the long-term preservation of works of art. In order to realize the avoidance of damages in advance, risk management as well as foresighted thinking is required. The application of the method of engineering mechanics for preventive conservation is at the very beginning of its development. This article is a contribution to this still very young field. Generally, sensitive artworks combine all properties of complex mechanical structures. Oil paintings on canvas, for instance, are asymmetric, multiple curvilinear structures made of aged anisotropic compound materials with cracks and other damages. Due to their popularity, some artworks travel a lot, and during the exhibition and storage, they are always exposed to shocks and vibrations, therefore the protection of sensitive paintings is a demanding task, the solution of which requires the multidisciplinary cooperation especially in the context of engineering mechanics with its many specializations. The subject of the presented research is an artificial aged painting dummy in the simplest conceivable composition. This paper aims to describe the mechanical behavior of this test object, which is the basic requirement for the development of technological protective measures. The concept of the digital twin, known from Industry 4.0, is used to solve this task. This article focuses on the design of a virtual painting dummy that has the same static and dynamic behavior as the investigated real test object. Therefore, the deflection of the real dummy in lying position as well as the curvature of its standing position without and with dynamic excitations have been measured. The advantage of the analytical and Finite Element Analysis (FEA) models presented are their practicability and quick realizability at fair correlation. The concept presented offers a potential way to assess and finally reduce the risk for original paintings during various transport, exhibition, and storage situations with the help of virtual objects.