Objectives To evaluate the inhibitory effects of maritime pine bark extract (Pycnogenol Ò ) on the deterioration of bone mineral density (BMD) and trabecular structure due to osteoporosis in ovariectomized (OVX) mice. Materials and methods Five-week-old OVX ICR mice were divided into three groups: (1) OVX mice given Pycnogenol (Pycnogenol), (2) sham-operated mice (sham), and OVX mice not given Pycogenol (OVX control). All mice received standard feed; drinking water was provided ad libitum, with tap water for the sham and OVX control groups, and water containing Pycnogenol (120 mg/L) for the Pycnogenol group. Mice were housed for 3 months under these conditions, and then the femurs were resected and blood samples collected. The BMD of the distal femoral epiphysis was analyzed by peripheral quantitative computed tomography. Micro-computed tomography was also performed to evaluate the three-dimensional structure. Deterioration of BMD and trabecular structure was compared between the groups. Results The Pycnogenol group showed a reduced loss of BMD compared to the OVX control group, which led to a significantly higher trabecular BMD in the former group. Additionally, surface area, number, content and complexity of the trabeculae, intertrabecular distance, and trabecular connectivity were all preserved in the Pycnogenol group. Pycnogenol thus significantly prevented trabecular architectural deterioration. Conclusions Our findings suggest that Pycnogenol may be useful in preventing BMD loss and trabecular architectural deterioration in osteoporosis.