Electrically conductive polyurethane nanostructured membranes have been prepared combining the electrospinning of polymer nanofibers (NFs) with the electrospraying of pristine multiwall carbon nanotubes (MWCNTs) in simultaneous processes. In order to have a better understanding of the distribution of MWCNTs on the surface of the membranes, the optimization of the electrospraying process has been carried out and the distribution of MWCNTs has been evaluated using image texture analysis techniques. Large membranes with a volume resistivity typical of electrostatic discharge materials with a MWCNTs concentration less than 0.3% wt (0.01 mg/cm2) have been obtained and characterized with morphological (SEM and TEM) and spectroscopic (UV-Vis, Raman) techniques.