Current therapy for phenylketonuria (PKU) consists of life-long dietary restriction of phenylalanine (Phe), which presents problems of adherence for patients. Alternative therapies under investigation include, among others, the use of gene therapy to provide copies of wild-type, non-mutant, phenylalanine hydroxylase (PAH) enzyme. Expression of PAH in both liver (the usual metabolic source of this enzyme) and skeletal muscle is under investigation. Liver gene therapy, using a viral vector based on the adeno-associated viruses (AAVs), provided effective clearance of serum Phe that was sustained for 1 year in some mice. In order for PAH expression to be effective in skeletal muscle, the essential metabolic cofactor, tetrahydrobiopterin (BH(4)), must also be provided, either by supplementation or gene therapy. Both these approaches were effective. When transgenic PKU mice that constitutively expressed PAH in muscle were given intraperitoneal supplementation with BH(4), this produced (transient) effective clearance of Phe to normal levels. In addition, use of an AAV vector containing the genes for PAH, and for two key synthetic enzymes for BH(4), provided substantial and long-lasting correction (more than 1 year) of blood Phe levels when injected into skeletal muscle of PKU mice. These two strategies provide promising treatment alternatives for the management of PKU in patients.