Taxifolin is a potent flavonoid that exerts anti-oxidative effect, and cilostazol increases intracellular cAMP levels by inhibiting phosphodiesterase 3 that shows antiinflammatory actions. BACE1 (β-site APP cleaving enzyme 1) is the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides. In this study, endogenous Aβ and C99 accumulation was explored in N2a Swe cells exposed to 1% FBS medium. Increased Aβ and C99 levels were significantly attenuated by taxifolin alone and in combination with cilostazol. Increased phosphorylated JAK2 at Tyr1007/1008 (P-JAK), phosphorylated STAT3 at Tyr 705 (P-STAT3) expressions and increased expressions of BACE1 mRNA and protein in the activated N2a Swe cells were significantly attenuated by taxifolin (10~50 μM), cilostazol (10~50 μM) alone and in combination at minimum concentrations. In these cells, decreased cytosol IκBα expression was elevated, and increased nuclear NF-κB p65 level and nuclear NF-κB p65 DNA binding activity were significantly reduced by taxifolin and cilostazol in a similar manner. Following STAT3 gene (~70% reduction) knockdown in N2a cells, Aβ-induced nuclear NF-κB and BACE1 expressions were not observed. Taxifolin, cilostazol, or resveratrol significantly stimulated SIRT1 protein expression. In SIRT1 gene-silenced (~50%) N2a cells, taxifolin, cilostazol, and resveratrol all failed to suppress Aβ1-42-stimulated P-STAT3 and BACE1 expression. Consequently, taxifolin and cilostazol were found to significantly decrease lipopolysaccharide (1–10 μg/ml)-induced iNOS and COX-2 expressions, and nitrite production in cultured BV-2 microglia cells and to increase N2a cell viability. In conclusion, taxifolin and cilostazol strongly inhibited amyloidogenesis in a synergistic manner by suppressing P-JAK2/P-STAT3-coupled NF-κB-linked BACE1 expression via the up-regulation of SIRT1.