The blood-brain barrier (BBB) hinders the brain delivery of therapeutic immunoglobulin γ (igG) antibodies. Evidence suggests that IgG-specific processing occurs within the endothelium of the BBB, but any influence on transcytosis remains unclear. Here, involvement of the neonatal Fc receptor (FcRn), which mediates IgG recycling and transcytosis in peripheral endothelium, was investigated by evaluating the transcytosis of IgGs with native or reduced FcRn engagement across human induced pluripotent stem cell-derived brain endothelial-like cells. Despite differential trafficking, the permeability of all tested IgGs were comparable and remained constant irrespective of concentration or competition with excess IgG, suggesting IgG transcytosis occurs nonspecifically and originates from fluid-phase endocytosis. Comparison with the receptor-enhanced permeability of transferrin indicates that the phenomena observed for IgG is ubiquitous for most macromolecules. However, increased permeability was observed for macromolecules with biophysical properties known to engage alternative endocytosis mechanisms, highlighting the importance of biophysical characterizations in assessing transcytosis mechanisms.The brain endothelial cells (BECs) that form the main structural component of the blood-brain barrier (BBB) are central to the protection of brain parenchyma. Unique from peripheral endothelium, BECs exhibit substantially reduced permeability of most bloodborne molecules 1 . Accordingly, this restrictive physiology also poses a formidable obstacle in the brain delivery of therapeutic molecules 2 . In particular, conventional immunoglobulin γ (IgG) antibody-based passive immunotherapies, which are structurally and functionally similar to endogenous IgGs, only demonstrate brain uptake of 0.1-0.3% of the injected dose 3,4 . Despite the need to improve the brain delivery of conventional therapeutic IgGs 5 , progress is hindered by the current lack of understanding regarding their interactions with BECs.IgG-endothelium interactions in the periphery are dominated by the neonatal fragment crystallizable (Fc) receptor (FcRn). Following internalization of circulating IgG, the acidic microenvironment of endosomal compartments enables FcRn to bind and recycle IgG back to the lumen in a pH-dependent manner 6 . FcRn-mediated recycling therefore limits lysosomal degradation and contributes to the extended serum half-life of IgGs. However, FcRn can also mediate the abluminal transcytosis of IgG, which is exemplified in the transfer of maternal IgG across the placental endothelium. In this regard, FcRn is a unique transcytosis receptor, e.g. compared to the transferrin receptor (TfR) 7 , as it can shuttle its ligand bidirectionally to either cell surface (i.e. luminal recycling or abluminal transcytosis) 8 . Traditional transcytosis pathways are categorized as fluid-phase (e.g. macropinocytosis) or adsorptive-mediated, which occur via specific (e.g. receptor-mediated transcytosis (RMT)) or nonspecific (e.g. electrostatic adsorption) processes....