MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in a limited number of nonendocrine organs.