For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.