2016
DOI: 10.1038/srep18962
|View full text |Cite
|
Sign up to set email alerts
|

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

Abstract: Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neura… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
513
1
10

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 495 publications
(529 citation statements)
references
References 73 publications
5
513
1
10
Order By: Relevance
“…Moreover, β is a scalar. In [5], the convolutional layers are configurable to their filter size k and number of filters d, which determine the structure of the CNN and affect the training performance of the model to a certain extent.…”
Section: Pss Prediction Modelmentioning
confidence: 99%
See 2 more Smart Citations
“…Moreover, β is a scalar. In [5], the convolutional layers are configurable to their filter size k and number of filters d, which determine the structure of the CNN and affect the training performance of the model to a certain extent.…”
Section: Pss Prediction Modelmentioning
confidence: 99%
“…Performance comparison with other network models. Zhou & Troyanska,2014[3] 66.4 SØnderby et al2014 [4] 67.4 Deep-CNF.2016 [5] 68.3 This paper 69. 4 …”
Section: The Experimentsmentioning
confidence: 99%
See 1 more Smart Citation
“…No entanto, futuramente poderemos adaptar um modelo similar que utilize PSSM. Nesse ponto, é relevante mencionar que todos os 5 mé-todos testados por Wang e colaboradores [71] e que utilizam PSSM, entre eles o PSIPRED e a rede neural convolucional profunda desenvolvida por eles, tem uma perda de até 10% de acurácia quando o alinhamento para construção da PSSM contém poucas proteínas. Para esses casos, os 5 métodos apresentaram acurácia em torno de 74% [71].…”
Section: Acurácia Dos Modelos De Prediçãounclassified
“…Para esses casos, os 5 métodos apresentaram acurácia em torno de 74% [71]. [71]. Para os demais casos, a acurácia foi calculada utilizando nossos dados e com os resíduos que apresentam consenso na atribuição da estrutura secundária.…”
Section: Acurácia Dos Modelos De Prediçãounclassified