The directionality and relative strengths of hydrogen bonds to monocyclic aromatic heterocycles were investigated using crystal structure data and theoretical calculations. Surveys of the Cambridge Structural Database for hydrogen bonds between C(sp3)(SINGLE BOND)O(SINGLE BOND)H and aromatic fragments containing one or more nitrogen and/or oxygen heteroatoms showed that hydrogen bonds to nitrogen atoms are much more abundant than to oxygen. Distinct preferred orientations were also revealed in these surveys. Theoretical calculations were performed on the interaction of methanol with pyridine, pyrimidine, pyrazine, pyridazine, oxazole, isoxazole, 1,2,4‐oxadiazole, and furan as models for the heterocyclic fragments. The intermolecular potential surface was thoroughly scanned using a model potential that accurately described the electrostatic forces (derived from distributed multipole analysis) with empirical parameters for the repulsion and dispersion terms. Minima on this surface agreed well with the observed orientations in the data base and they were typically deeper for nitrogen than for oxygen acceptors, although the hydrogen bond strength and geometry was influenced by other heteroatoms in the ring. These results were confirmed by highly accurate intermolecular perturbation theory calculations, which also estimated the deviations from hydrogen bonding in the traditional nitrogen lone pair direction that could occur with negligible reduction in the interaction energy. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 2060–2074, 1997