This study compares bovine leukocyte beta-adrenergic receptor densities to that of the rat, demonstrates for the first time a functional beta(2)-adrenergic receptor signaling pathway in steer neutrophils, and investigates the effect of an inflammatory stimulus on that signaling pathway. The beta(1)-/beta(2)-adrenergic antagonist ([3H])CGP-12177 demonstrated that rat lymphocyte specific binding-site density was highest, followed by steer and dairy cow lymphocytes, and lastly steer and dairy cow neutrophils. The beta(2)-adrenergic agonist terbutaline stimulated steer neutrophil adenosine 3,5-cyclic monophosphate (cAMP) production, an effect increased by inclusion of > or = 1 x 10(-8) M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. Both terbutaline and the nonselective phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) independently decreased steer neutrophil superoxide anion production in a concentration-dependent manner, with 1 x 10(-4) M IBMX enhancing both the potency and efficacy of the terbutaline effect (up to 74% reduction in superoxide anion production). Superoxide anion production was also reduced by the synthetic cAMP analog 8-bromo-cAMP, which increased the potency of the IBMX effect on superoxide anion production. Taken together, these data demonstrate the presence of a beta(2)-adrenergic receptor signaling pathway in bovine neutrophils much like that described in other animal species, as well as the potential for an inflammatory stimulus to alter its function.