Mitogen-activated protein kinases (MAPKs) are considered major signal transducers early during the development of acute pancreatitis. Pentoxifylline is a phosphodiesterase inhibitor with marked anti-inflammatory properties through blockade of extracellular signal regulated kinase (ERK) phosphorylation and tumor necrosis factor ␣ production. Our aim was to elucidate the mechanism of action of pentoxifylline as an anti-inflammatory agent in acute pancreatitis. Necrotizing pancreatitis induced by taurocholate in rats and taurocholate-treated AR42J acinar cells were studied. Phosphorylation of ERK and ERK kinase (MEK1/2), as well as PP2A, PP2B, and PP2C serine/ threonine phosphatase activities, up-regulation of proinflammatory genes (by reverse transcription-polymerase chain reaction and chromatin immunoprecipitation), and recruitment of transcription factors and histone acetyltransferases/deacetylases to promoters of proinflammatory genes (egr-1, atf-3, inos, icam, il-6, and tnf-␣) were determined in the pancreas during pancreatitis. Pentoxifylline did not reduce MEK1/2 phosphorylation but prevented the marked loss of serine/threonine phosphatase PP2A activity induced by taurocholate in vivo without affecting PP2B and PP2C activities. The rapid loss in PP2A activity induced by taurocholate in acinar cells was due to a decrease in cAMP levels that was prevented by pentoxifylline. Pentoxifylline also reduced the induction of early (egr-1, atf-3) responsive genes and abrogated the up-regulation of late (inos, icam, il-6, tnf-␣) responsive genes and recruitment of transcription factors (nuclear factor B and C/EBP) and histone acetyltransferases to their gene promoters during pancreatitis. In conclusion, the beneficial effects of pentoxifylline-and presumably of other phosphodiesterase inhibitors-in this disease seem to be mediated by abrogating the loss of cAMP levels and PP2A activity as well as chromatin-modifying complexes very early during acute pancreatitis.